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Abstract

A study of plastic buckling of a circular cylindrical shell subject to axial, torsional and circumferential loading

stresses is presented. In the deformation model, the transverse shear is taken into account by a ®rst-order theory with a

correction factor. For the buckled equilibrium, the contributions of both v (circumferential displacement) and w

(normal displacement) to the buckling are included so that a better accuracy can be achieved. J2 deformation theory

and J2 ¯ow theory of plasticity are used for the establishment of the constitutive relations for buckling analysis. With

the existence of torsional load, the equation of radial equilibrium includes the term of mixed second-order derivative

o2w=oxoy and the plastic in-plane stress±strain relations are anisotropic, and therefore a handy form of solution in

terms of trigonometric functions is no longer possible. Consequently, the ®nite di�erence method is used. To improve

the accuracy, a ®ve-point ®nite di�erence scheme is employed instead of the conventional central di�erence. Numerical

results of examples show the interactive roles of the in-plane loads in the plastic buckling. Ó 2001 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

The plastic buckling problem of a circular cylindrical shell has long been widely investigated due to its
great importance in the design of aerospace and marine structures. The investigations have in turn greatly
promoted the development of the theory and method in dealing with the buckling phenomenon in the past
half a century. Numerous works about this problem can be found in the literature, covering theoretical and
experimental studies of elastic and plastic buckling under the loads of axial compression, external pressure
or end torsion. For the plastic buckling, among other recent works, studies by Andrews et al. (1983), Ore
and Durban (1992) and Lin and Yeh (1994) are worth mentioning. They are all concerned with the buckling
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under axial compression and are typical of experimental, analytical and numerical methods, respectively.
For plastic buckling under combined loads especially in the case when torsion is involved, not as many
previous works can be found as in the case without torsion. This is partly because of two di�culties arising
from the existence of torsion. First, the equation of buckled equilibrium in the normal direction will thus
include the mixed second-order derivative o2w=oxoy. Second, the prebuckling stress state will thus include
shear stress and the stress±strain relations will become anisotropic when the shell is loaded into plastic
range. With these di�culties, the equations of buckled equilibrium cannot be solved in terms of simple
trigonometric or exponential functions, but must be treated with numerical methods. Teng and Rotter
(1989) gave a detailed account of the use of ®nite element method for the bifurcation analysis of elastic±
plastic axisymmetric shells under combined loads including torsion. Tu�gcu (1985, 1991) used a helical form
for the displacements of buckling, disregarding the end conditions, to predict the bifurcation of elastic±
plastic cylindrical shells under combined loading, including axial, radial and torsional loads. The results are
good as long as the e�ect of end conditions can be ignored. Lee and Ades (1957) presented a series of
experimental results of plastic buckling of cylindrical shells under pure torsion, accompanied by a theo-
retical analysis with the energy method under some simpli®cation for stress±strain relations. For the plastic
buckling of shells with bi-axial prebuckling stress state, in addition to Tu�gcu (1985, 1991) mentioned above,
Giezen et al. (1991) and Blachut et al. (1996) studied cylindrical shells subjected to external pressure and
axial tension with a special attention to the nonproportional loading e�ect and the well known plastic
buckling paradox regarding the deformation theory and the ¯ow theory.

In the present paper, the plastic buckling of a circular cylindrical shell under combined axial, torsional
and circumferential loading stresses is studied. The axial and circumferential loads may be compressive
or tensile. The deformation model used for analysis is the so-called ®rst-order shear deformation theory,
which allows for the transverse shear of the shell, so that there are ®ve independent variables involved in
the problem, namely, three displacements and two rotations. As a result, there are ®ve equations for the
buckled equilibrium. In these equations, the contribution of a term involving o2v=ox2 to the buckling is
included. The inclusion of this term may improve the accuracy in predicting the critical load especially in
the case of column-type buckling (Mao and Williams, 1998a). In addition, due to the existence of tor-
sion, these equations include the mixed derivative o2w=oxoy and plastic stress±strain relations become
anisotropic. Therefore, these equations cannot be fully solved in the form of trigonometric functions.
The main task of the present study is to solve the complete set of ®ve equations together with the
anisotropic stress±strain relations. To do this, a semi-analytical method is used. By assuming a trigo-
nometric form in the circumferential direction, the equations of buckled equilibrium are reduced to
ordinary di�erential equations in the axial direction, which are solved with a ®ve-point ®nite di�erence
scheme.

The computer code based on the foregoing theory and method is checked against some available ex-
perimental data for cases of individual load. Numerical results of examples are given with special focus on
the interactive roles of the loads as stabilizing or destabilizing factors.

2. Basic equations

A right-handed axis system is used for a circular cylindrical shell of radius R and length L. Let x, h and z
be the coordinates for any point P in the shell wall, where x is the axial distance of the point to one end of
the shell, h is the circumferential angular coordinate and z is the distance of the point to the middle surface
(positive when the point is on the outer side of the middle surface). Another circumferential coordinate
y � Rh is also used.

The displacement ®eld of the ®rst-order shear-deformation theory assumes that
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u��x; y; z� � u�x; y� � zw�x; y�;
v��x; y; z� � v�x; y� � zu�x; y�;
w��x; y; z� � w�x; y�;

�1�

where fu�; v�;w�g is the displacement vector in the �x; y; z� coordinate system at an arbitrary point P �x; y; z�.
The associated strains at P �x; y; z� in the case of small strains and ®nite rotations are given by Mao and
Williams (1998b) for thick shells. For thin shells, it reduces to

e�x�x; y; z� � ex�x; y� � z
ow�x; y�

ox
;

e�y�x; y; z� � ey�x; y� � z
ou�x; y�

oy
;

c�xy�x; y; z� � cxy�x; y� � z
ow�x; y�

oy

�
� ou�x; y�

ox

�
;

c�xz�x; y; z� � cxz�x; y� �
ow
ox
� w;

c�yz�x; y; z� � cyz�x; y� �
ow
oy
ÿ v

R
� u;

�2�

where

ex � ou
ox
� 1

2

ov
ox

� �2
"

� @w
@x

� �2
#
;

ey � ov
oy
� w

R
� 1

2

ow
oy

�
ÿ v

R

�2

;

cxy �
ou
oy
� ov

ox
� ow

ox
ow
oy

�
ÿ v

R

� �3a�

represent the strains at the middle surface. In the linearized case, these strains can be further simpli®ed to
become

ex � ou
ox
; ey � ov

oy
� w

R
; cxy �

ou
oy
� ov

ox
: �3b�

Based on the nonlinear kinematic equation (2) application of the principle of virtual work yields the
equations of buckled equilibrium (Mao and Williams, 1998a,b).

oTx

ox
� oTxy

oy
� 0; �4a�

oTxy

ox
� oTy

oy
� Qy

R
� o

ox
Tx

ov
ox

� �
� Ty

R
ow
oy

�
ÿ v

R

�
� Txy

R
ow
ox
� 0; �4b�

oQx

ox
� oQy

oy
ÿ Ty

R
� o

ox
Tx

ow
ox

� �
� o

oy
Ty

ow
oy

��
ÿ v

R

��
� o

ox
Txy

ow
oy

��
ÿ v

R

��
� o

oy
Txy

ow
ox

� �
� 0; �4c�
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oMx

ox
� oMxy

oy
ÿ Qx � 0; �4d�

oMxy

ox
� oMy

oy
ÿ Qy � 0; �4e�

where the stress resultants are de®ned as usual

Tx �
Z h=2

ÿh=2

r�xdz; Mx �
Z h=2

ÿh=2

r�xzdz; Qx �
Z

s�xzdz; . . . etc: �5�

and h is the thickness of the shell. The stresses with a superscript star in Eq. (5) are those at an arbitrary
point P �x; y; z�.

Eqs. (4a)±(4e) are similar to their corresponding equations in Stein (1986) with the only di�erence being
that Eq. (4b) includes an additional nonlinear term, o=ox Txov=ox� �, which may improve the accuracy in
predicting the critical load, especially in the case of column-type buckling (Mao and Williams, 1998a).

From Eqs. (4a)±(4e) a set of Donnell-type nonlinear equations of equilibrium can be obtained by
dropping these nonlinear terms which do not include the second-order derivatives of displacements,

oTx

ox
� oTxy

oy
� 0; �6a�

oTxy

ox
� oTy

oy
� Qy

R
� o

ox
Tx

ov
ox

� �
� 0; �6b�

oQx

ox
� oQy

oy
ÿ Ty

R
� o

ox
Tx

ow
ox

� �
� o

ox
Txy

ow
oy

� �
� o

oy
Txy

ow
ox

� �
� o

oy
Ty

ow
oy

� �
� 0; �6c�

oMx

ox
� oMxy

oy
ÿ Qx � 0; �6d�

oMxy

ox
� oMy

oy
ÿ Qy � 0: �6e�

Eqs. (6a)±(6e) agree with the equations used by Tabiei and Simitses (1994) for thin shells, except for the
additional term mentioned above.

As usual, the linearized equations of equilibrium for initial buckling can be obtained from the nonlinear
Equations (6a)±(6e) by replacing the stress resultants Tx, Ty and Txy in the nonlinear terms of Eqs. (6b) and
(6c) with the constant prebuckling membrane forces T 0

x , T 0
y and T 0

xy , respectively, and take the form.

oTx

ox
� oTxy

oy
� 0; �7a�

oTxy

ox
� oTy

oy
� Qy

R
� T 0

x

o2v
ox2
� 0; �7b�

oQx

ox
� oQy

oy
ÿ Ty

R
� T 0

x

o2w
ox2
� 2T 0

xy

o2w
oxoy

� T 0
y

o2w
oy2
� 0; �7c�

oMx

ox
� oMxy

oy
ÿ Qx � 0; �7d�
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oMxy

ox
� oMy

oy
ÿ Qy � 0: �7e�

As in the usual formulation of a buckling problem, the stress resultants Tx; Txy ; . . . ;Qy and the dis-
placements v and w in Eqs. (7a)±(7e) are the increments of these quantities due to buckling (from the
prebuckling state to a neighboring buckled state). Therefore, for the study of initial buckling, these in-
crements can be in®nitesimal.

As mentioned in the previous section, the in-plane plastic stress±strain relations are anisotropic due to
the torsion. Therefore, the stress±strain relations for the shell buckling can be expressed by

r�x
r�y
s�xy

8<:
9=; � Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

24 35 e�x
e�y
c�xy

8<:
9=; �8a�

plus a separate set for transverse shear stresses and strains

s�yz
s�xz

� �
� Q44 0

0 Q55

� �
c�yz
c�xz

� �
: �8b�

Substituting Eqs. (8a) and (8b) into Eq. (5) gives

Tx

Ty

Txy

8<:
9=; � A11 A12 A16

A12 A22 A26

A16 A26 A66

24 35 ex

ey

cxy

8<:
9=;; �9a�

Mx

My

Mxy

8<:
9=; � D11 D12 D16

D12 D22 D26

D16 D26 D66

24 35 vx

vy

vxy

8<:
9=;; �9b�

Qy

Qx

� �
� A44 0

0 A55

� �
cyz

cxz

� �
; �10�

where

vx �
ow
ox
; vy �

ou
oy
; vxy �

ou
ox
� ow

oy
; �11�

Aij �
Z h=2

ÿh=2

Qij dz; Dij �
Z h=2

ÿh=2

Qijz2 dz:

Eq. (7a) can be satis®ed by introducing a stress function F such that

Tx � o2F
oy2

; Txy � ÿ o2F
oxoy

: �12�

Let F, v, w, w and u be ®ve basic unknowns of the buckling problem considered. F is used instead of u as a
basic unknown for the boundary condition Tx � 0 (instead of u� 0) in this paper. This boundary condition
can be satis®ed more easily by F than by u. With Eq. (9a), Ty can be expressed as

Ty � 1
�A22

�ey ÿ �A12Tx ÿ �A26Txy�; �13�

where � �Aij� is the inverse of �Aij� in Eq. (9a). Hence, the equation of compatibility and the Eqs. (7b)±(7e)
(equations of equilibrium) can also be expressed in terms of the above ®ve basic unknowns. For initial
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buckling, the linearized strains of Eq. (3b) are used, from which the equation of compatibility can be
obtained as

oex

oy
� o

ox
cxy

�
ÿ ov

ox

�
: �14�

Eq. (14) can be expressed in terms of the basic unknowns by

�A11
�A22

�
ÿ �A 2

12

� o3F
oy3
ÿ 2� �A16

�A22 ÿ �A12
�A26� o3F

oxoy2
� �A66
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�
� w

R

�
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o
oy
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oy

�
� w

R

�
ÿ �A22

o2v
ox2

: �15�

Similarly, Eqs. (7b)±(7e) are transformed into

1
�A22

o2v
oy2

�
� 1

R
ow
oy
ÿ �A12

o3F
oy3
� �A26

o3F
oxoy2

�
ÿ o3F

ox2 oy
� A44

R
ow
oy

�
� uÿ v

R

�
� T 0

x

o2v
ox2
� 0; �16�

A55

o2w
ox2

�
� ow

ox

�
� A44

o2w
oy2

�
� ou

oy
ÿ 1

R
ov
oy

�
ÿ 1

R �A22

ov
oy

�
� w

R
ÿ �A12

o2F
oy2
� �A26

o2F
oxoy

�
� T 0

x

o2w
ox2
� 2T 0

xy

o2w
oxoy

� T 0
y

o2w
oy2
� 0;

�17�

D11

o2w
ox2
� �D12 � D66� o2u

oxoy
� D16 2

o2w
oxoy

�
� o2u

ox2

�
� D26

o2u
oy2
� D66

o2w
oy2
ÿ A55

ow
ox

�
� w

�
� 0; �18�

D22

o2u
oy2
� �D12 � D66� o2w

oxoy
� D26 2

o2u
oxoy

�
� o2w

oy2

�
� D16

o2w
ox2
� D66

o2u
ox2
ÿ A44

ow
oy

�
� uÿ v

R

�
� 0:

�19�
Eqs. (15)±(19) are the governing equations in terms of the ®ve basic unknowns for the buckling problem
considered.

3. Constitutive relations of plasticity

The most commonly used constitutive relations of plasticity for buckling problems are J2 ¯ow theory
and J2 deformation theory (Hill, 1983), although there is a well known paradox about their theoretical
correctness and practical e�ectiveness.

The J2 ¯ow theory gives the increments of plastic strains caused by increments of stresses.

dep
ij �

3

4J2

1

Et

�
ÿ 1

E

�
SijSld drld : �20�

In Eq. (20) and in Eqs. (21) and (22), the subscripts range from 1 to 3 to represent x, y and z, respectively,
and the repeated subscript means summation over it from 1 to 3. The tensor Sij is the stress deviator and
J2 � SmnSmn=2. Et is the tangent modulus. For the complete constitutive relations of the J2 ¯ow theory, the
elastic part of the incremental strains should be added to Eq. (20). As usual, when applying Eq. (20) to
initial buckling problems, Sij should be the deviator of the prebuckling stresses, and drij and de p

ij should be,
respectively, the increments of stresses and their associated plastic strains due to buckling. The prebuckling
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stress state is supposed to be a plane stress state, where r23 � r31 � r33 � 0, and therefore Eq. (20) are
greatly reduced. In particular, Eq. (20) will then give dep

23 � dep
31 � 0, so that the constitutive relations (8b)

and (10) are elastic.
The J2 deformation theory usually takes the form

eij � 3

2Es

rij ÿ 1

2Es

�
ÿ 1ÿ 2v

3E

�
rkkdij; �21�

where Es is the secant modulus. Since buckling problems need stress±strain relations in an incremental
form, Eq. (21) should be di�erentiated to give

deij � 3

4J2

1

Et

�
ÿ 1

Es

�
SijSlddrld � 3

2Es

drij

�
ÿ 1

3
drkkdij

�
� 1ÿ 2v

3E
drkkdij: �22�

In the case of plane stress, Eqs. (22) are greatly reduced. It should be mentioned that the J2 deformation
theory is valid only for proportional loading, which is not always the case in buckling problems with
combined loads. But as pointed out by Giezen et al. (1991), the error caused by nonproportional loading is
tolerable as long as load paths do not diverge too much from a proportional path.

As usual, for initial buckling problems, it is assumed that no unloading occurs during the buckling.

4. Solution of the basic equations

The solution is assumed to be of the following form:

F �x; y� � ec�x� cos nh� es�x� sin nh;

w�x; y� � wc�x� cos nh� ws�x� sin nh;

v�x; y� � vc�x� cos nh� vs�x� sin nh;

w�x; y� � pc�x� cos nh� ps�x� sin nh;

u�x; y� � fc�x� cos nh� fs�x� sin nh;

�23�

where h � y=R and n is an integer and may assume 1; 2; . . . Substituting Eqs. (23) into Eqs. (15)±(19) and
then letting the coe�cients of cos nh and sin nh be zero for each equation yields 10 ordinary di�erential
equations. These lengthy equations can be written in a compact matrix form as follows:

Compatibility:

�Ue�feg � �Uv�fvg � �U w�fwg; �24a�
Equilibrium of forces in v-direction:

�V e�feg � �V p�fpg � �V f �ff g � �V v�fvg � �V w�fwg ÿ k�Y v�fvg � 0; �24b�
Equilibrium of forces in w-direction:

�W e�feg � �W p�fpg � �W f �ff g � �W v�fvg � �W w�fwg ÿ k�Zw�fwg � 0; �24c�
Equilibrium of moments in w-direction:

�P p�fpg � �P f �ff g � �P v�fvg � �P w�fwg; �24d�
Equilibrium of moments in u-direction:

�F p�fpg � �F f �ff g � �F v�fvg � �F w�fwg; �24e�
where the vectors are de®ned as follows:
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feg � �ec; es; e0c; e
0
s; e
00
c ; e
00
s �T etc:

and the prime is the derivative with respect to x. All the coe�cient matrices U e; V e; . . ., and F w are 2� 6
constant matrices. Their expressions are not presented in this paper for the sake of conciseness. kP 0 is a
load parameter related to the prebuckling membrane forces in the following way:

T 0
x � ÿPk; T 0

y � ÿQk; T 0
xy � Sk: �25�

The deformation theory requires that P, Q and S be ®xed so that T 0
x :T 0

y :T 0
xy remain the same during the

whole loading process. This is also a requirement for an eigenvalue problem to be obtained.
A ®ve-point ®nite di�erence scheme is used to solve Eqs. (24a)±(24e). Suppose the interval concerned is

divided evenly into sub-intervals by m points (called stations), x1; x2; . . . ; xm. The derivatives of a quantity,
wc for instance, at station i can be calculated from the values of wc at stations iÿ 2, iÿ 1, i, i� 1 and i� 2
with a ®ve-point Lagrangian interpolation:

w0c�xi� � 1

12D
�1;ÿ8; 0; 8;ÿ1�fw�cg; �26a�

w00c�xi� � 1

12D2
�ÿ1; 16;ÿ30; 16;ÿ1�fw�cg; �26b�

where fw�cg � �wiÿ2
c ;wiÿ1

c ;wi
c;w

i�1
c ;wi�2

c �T with the superscript denoting the station number, and D is the
length of a sub-interval. Eqs. (26a) and (26b) are referred to as the ``®ve-point central di�erence''.

Similarly, the derivatives of wc at xiÿ1 and xiÿ2 can be calculated with the ``®ve-point forward di�erence'':

w0c�xiÿ1� � 1

12D
�ÿ3;ÿ10; 18;ÿ6; 1�fw�cg; �27a�

w00c�xiÿ1� � 1

12D2
�11;ÿ20; 6; 4;ÿ1�fw�cg; �27b�

w0c�xiÿ2� � 1

12D
�ÿ25; 48;ÿ36; 16;ÿ3�fw�cg; �28a�

w00c�xiÿ2� � 1

12D2
�35;ÿ104; 114;ÿ56; 11�fw�cg: �28b�

The equations of the ``®ve-point backward di�erence'' for the calculation of the derivatives at xi�1 and
xi�2 can be obtained from Eqs. (27a), (27b), (28a) and (28b) by reversing the direction of the x-axis.

Thus, all the vectors in Eqs. (24a)±(24e) can be expressed with the ®ve-point ®nite di�erence scheme at
any station. Finally, the di�erential Eqs. (24a)±(24e) are reduced to a set of algebraic equations:

� �U e�f�eg � � �U v�f�vg � � �U w�f�wg; �29a�

� �V e�f�eg � � �V p�f�pg � � �V f �f �f g � � �V v�f�vg � � �V w�f�wg ÿ k��Y v�f�vg � 0; �29b�

� �W e�f�eg � � �W p�f�pg � � �W f �f �f g � � �W v�f�vg � � �W w�f�wg ÿ k��Zw�f�wg � 0; �29c�

� �P p�f�pg � � �P f �f �f g � � �P v�f�vg � � �P w�f�wg; �29d�

� �F p�f�pg � � �F f �f �f g � � �F v�f�vg � � �F w�f�wg; �29e�
where the vectors are de®ned as
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f�eg � �e1
c ; e

1
s ; e

2
c ; e

2
s ; . . . ; em

c ; e
m
s �T; etc:

and the coe�cient matrices are all �2m� 2m� constant matrices, which are determined when deriving Eqs.
(29a)±(29e).

Using Eqs. (29a), (29d) and (29e) to eliminate f�eg, f�pg and f �f g in Eqs. (29b) and (29c) gives an ei-
genvalue problem of a (4m) ´ (4m) matrix. For any given circumferential wave number n in Eqs. (23), the
solution of the eigenvalue problem yields eigenvalues, the smallest of which, k�n, is called the buckling load
parameter corresponding to that n. The minimum of all these k�n is the critical load parameter, kcr, of the
shell, i.e.,

kcr � min
n�1;2;...

�k�n�: �30�

Then, substitution of kcr into Eq. (25), where the values of P, Q and S are given for a speci®c problem,
yields the critical loads.

5. Axisymmetric case

The case when n � 0 in Eq. (23) is referred to as axisymmetric case. In this case, all quantities are in-
dependent of y. The equations of buckled equilibrium become

dTx

dx
� 0; �31a�

dTxy

dx
� Qy

R
� T 0

x

o2v
ox2
� 0; �31b�

dQx

dx
ÿ Ty

R
� T 0

x

o2w
ox2
� 0; �31c�

dMx

dx
ÿ Qx � 0; �31d�

dMxy

dx
ÿ Qy � 0: �31e�

From these equations it can be seen that only the axial load contributes to the axisymmetric buckling.
Eq. (31a) and the fact that Tx�0� � Tx�L� � 0, i.e., there is no change in the end load (since bifurcation is
supposed to occur at a constant load), leads to the conclusion that Tx�x� � 0. Therefore,

du
dx
� ÿ 1

A11

A12

w
R

�
� A16

dv
dx

�
: �32�

Introducing Eqs. (9a), (9b) and (10) into Eqs. (31b)±(31e) and using Eq. (32) to eliminate u yield four
governing equations:

A66

�
ÿ A2

16

A11

�
d2v
dx2
ÿ A44

R2
v� A11A26 ÿ A12A16

RA11

dw
dx
� A44

R
uÿ P

d2v
dx2
� 0 �33a�

A12A16 ÿ A11A26

RA11

dv
dx
� A55

d2w
dx2
ÿ A11A22 ÿ A2

12

R2A11

wÿ A55

dw
dx
ÿ P

d2w
dx2
� 0 �33b�

R. Mao, G. Lu / International Journal of Solids and Structures 38 (2001) 741±757 749



D11

d2w
dx2
ÿ A55w� D16

d2u
dx2
ÿ A55

dw
dx
� 0 �33c�

D66

d2u
dx2
ÿ A44u� D16

d2w
dx2
� A44

v
R
� 0 �33d�

in terms of four basic unknowns, v�x�, w�x�, W�x� and /�x�, where P � ÿT 0
x is the axial compressive load.

Eqs. (33a)±(33d) can be reduced to an eigenvalue problem of matrix by the ®ve-point ®nite di�erence
scheme described in the previous section.

6. Numerical examples

For the computation of numerical examples, two typical sets of boundary conditions are considered.
One is called clamped and is expressed as

Tx � 0; v � 0; w � 0; w � 0; u � 0 at x � 0; L: �34�
The other is called simply supported and is expressed as

Tx � 0; v � 0; w � 0; Mx � 0; u � 0 at x � 0; L: �35�
Conditions in Eq. (34) are all in terms of the ®ve basic unknowns and can be directly used in the solution

procedure described in the previous sections. In conditions in (35), however, Mx is not one of the ®ve
unknown variables and the condition Mx � 0 should be transformed so as to be expressed by the basic
unknowns:

D11

dw
dx
� D12

du
dy
� D16

dw
dy

�
� du

dx

�
� 0: �36�

Substitution of Eq. (23) into Eq. (36) yields two equations

D11p0c �
n
R
�D12fs � D16ps� � D16f 0c � 0 at x � 0; L; �37a�

D11p0s ÿ
n
R
�D12fc � D16pc� � D16f 0s � 0 at x � 0; L �37b�

for the ®nite di�erence scheme. Let x � 0 be station 0 and x � L be station m� 1. Writing Eqs. (37a) and
(37b) in forward ®nite di�erence at station 0 yields two algebraic equations, from which p0

c and p0
s can be

solved. The solutions can be written in an enlarged matrix form, which reads, after taking into account
f 0

c � f 0
s � 0 due to u � 0 at x � 0

p0
c

p0
s
�
�
�
p4

c
p4

s

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
� �Lp�

p1
c

p1
s
�
�
�
p4

c
p4

s

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
� �Lf �

f 1
c

f 1
s
�
�
�
f 4

c
f 4

s

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
; �38�

where [Lp] is a 10 � 8 matrix with its lower eight rows forming an eighth-order unit matrix, and [Lf ] is also
a 10 � 8 matrix with its lower eight rows being all zero. A similar equation can also be established at
station m� 1.
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pmÿ3
c

pmÿ3
s
�
�
�

pm�1
c

pm�1
s

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
� �Rp�

pmÿ3
c

pmÿ3
s
�
�
�
pm

c
pm

s

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
� �Rf �

f mÿ3
c

f mÿ3
s
�
�
�
f m

c
f m

s

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
; �39�

where [Rp] and [Rf ] are all 10 � 8 matrices with the upper part of [Rp] being an eighth-order unit matrix
and the upper part of [Rf ] being an eighth-order zero matrix. Eqs. (38) and (39) represent the condition
Mx� 0 at x� 0 and L, and are used in the ®nite di�erence scheme.

The boundary conditions other than clamped and simply supported de®ned by Eqs. (34) and (35), if
needed, can also be handled in a similar way.

Example 1. For a cylindrical shell, the plastic buckling under axial compression is mainly axisymmetric. In
this example a set of three cylindrical shells tested by Lee (1962) resulting in axisymmetric buckling is used
to check the present theory and the computer code. The stress±strain relation of the aluminium alloy used
for the cylinders is expressed by the Ramberg±Osgood equation,

e � r
E

1

"
� 3

7

r
ry

� �Nÿ1
#
; �40�

where the three parameters are YoungÕs modulus E, yield stress ry , and the hardening parameter N. Their
values are E � 70 GPa, ry � 23:62 MPa and N � 4:1. The elastic PoissonÕs ratio is m� 0.32. The two ends of
each shell are simply supported.

In Table 1, the experimental results of Lee (1962) and the calculated results with the present method are
compared. Comparison shows that the deformation theory gives pretty good results but the ¯ow theory
predicts much too high critical loads. The three shells were also analyzed for axisymmetric buckling by Ore
and Durban (1992). Their results are also listed in Table 1 and show good agreement with those from the
present study.

Example 2. Another check of the present analysis is made with the experimental results of buckling due to
pure torsion given by Lee and Ades (1957). The material used in their ®rst group of tests is also described by
the Ramberg±Osgood equation with E � 70 GPa, ry � 503:66 MPa and N � 10. The elastic PoissonÕs ratio
is m � 0:32.

The cylinders used in the tests are fairly long with L/R �14. Their thicknesses vary in a range. The two
ends of each shell are simply supported. The calculated results are depicted in Fig. 1 together with the
experimental ones. The ®gure shows a fairly good agreement between theoretical and experimental results,
especially for the ¯ow theory. It seems that for the plastic torsional buckling, the ¯ow theory may predict
critical loads better than the deformation theory.

Table 1

Critical stress (MPa) for pure axial compression

Geometry Experimental

(Lee 1962)

Present study Ore and Durban (1992)

R/h L/R Deform. ¯ow Deform. ¯ow

9.36 4.21 96.87 89.71 165.46 88.49 162.33

19.38 4.10 78.60 74.87 124.25 74.09 122.03

29.16 4.06 64.74 67.70 106.00 67.06 103.98
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Example 3. In this example the buckling under combined axial and torsional loads is studied. The shells
used in this example are the same as in Example 2, but with the ratio of radius to thickness ®xed at R/h� 15.

As is known, for the buckling under combined loads, axial tension acts as a stabilizing factor while axial
compression is a destabilizing factor. To show this, calculations were ®rst made for the elastic buckling of
the shells. The results are depicted by the solid curves in Figs. 2 and 3 showing that, compared with the
buckling under pure torsion, the existence of axial compression reduces the critical shear stress and the
existence of axial tension increases the critical shear stress. In this sense axial compression is said to be
destabilizing and axial tension, stabilizing. Moreover, Fig. 2 shows that torsional load is also a destabilizing
factor in terms of reducing the critical compressive stress compared with the critical stress of pure axial
compression.

For plastic buckling, the interaction of axial and torsional loads are more complicated. First, the critical
stresses for plastic buckling are lower than those for elastic buckling, and the above mentioned stabilizing
and destabilizing e�ects are weaker for the lower stress level. Second, compared with each individual load,

Fig. 1. Critical stress of torsional buckling of the shell in Example 2.

Fig. 2. Buckling under combined axial compression and torsion in Example 3. P=�P � S� is a proportion parameter. P=�P � S� � 0 for

pure torsion and P=�P � S� � 1 for pure axial compression. P and S are de®ned by Eq. (25).
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combined loads tend to increase the plasticity and thus to reduce critical stresses. As a result of the
combination of all these factors, the critical stresses for plastic buckling under combined axial and torsional
loads are shown by broken curves in Figs. 2 and 3 and smooth curves in Figs. 4 and 5.

Tu�gcu (1985) studied the interaction of axial and torsional loads for the plastic buckling of cylindrical
shells by assuming a helical displacement ®eld for buckling. Some of its results are listed in Tables 2 and 3,
in comparison with the results based on the present study. These results are for the shell used by Tu�gcu
(1985) with the following geometrical and material parameters: R/h� 20, L/R� 10, E=ry � 100; v � 0:3,
and N� 6, where N is the strain hardening parameter in Eq. (40). The two ends of the shell are assumed to
be simply supported. The numerical results of Tu�gcu (1985) listed in the tables are obtained from the curves
in that paper.

For the deformation theory, as Table 2 shows, the results of the present study and those from Tu�gcu
(1985) are close to each other as long as the loading is identical or close to pure axial compression or pure
torsion (when T 0

x :T 0
xy � 0:1, )0.1:1, 0.1:1, )1:0 or )1:0.1, for example). For the loading in which T 0

x and T 0
xy

Fig. 3. E�ect of the axial tension on the critical shear stress of the shell in Example 3.

Fig. 4. Plastic buckling under combined axial compression and torsion in Example 3. P=�P � S� is a proportion parameter.

P=�P � S� � 0 for pure torsion and P=�P � S� � 1 for pure axial compression. P and S are de®ned by Eq. (25).
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are comparable (T 0
x :T 0

xy � ÿ1:1 or 1:1, for example), Tu�gcu (1985) predicts much lower critical stresses then
the present study. Moreover, the results from Tu�gcu (1985) do not show any stabilizing e�ect of axial
tension while a bit of this e�ect can be seen from the results of the present study.

For the ¯ow theory in Table 3, the results of the present study and those from Tu�gcu (1985) are close to
each other for the loading identical or close to pure torsion (T 0

x :T 0
xy � 0:1, )0.1:1, or 0.1:1 for example).

When the axial load is large (e.g. T 0
x :T 0

xy � ÿ1:0, )1:0.1, )1:1 or 1:1), Tu�gcu (1985) predicts strong desta-

Table 2

Comparison with Tu�gcu (1985) for the deformation theory

T 0
x :T 0

xy Present study Tu�gcu (1985)

rcr=ry scr=ry rcr=ry scr=ry

ÿ1:0 ÿ1.62 0 ÿ1.72 0

ÿ1:0.1 ÿ1.56 0.156 ÿ1.66 0.166

ÿ1:1 ÿ0.742 0.742 ÿ0.540 0.540

ÿ0.1:1 ÿ0.0839 0.839 ÿ0.0836 0.836

0:1 0 0.840 0 0.834

0.1:1 0.0854 0.854 0.0826 0.826

1:1 0.807 0.807 0.551 0.551

Fig. 5. E�ect of the axial tension on the critical shear stresss at plastic buckling of the shell in Example 3.

Table 3

Comparison with Tu�gcu (1985) for the ¯ow theory

T 0
x :T 0

xy Present study Tu�gcu (1985)

rcr=ry scr=ry rcr=ry scr=ry

ÿ1:0 ÿ1.64 0 ÿ2.364 0

ÿ1:0.1 ÿ2.14 0.214 ÿ1.30 0.130

ÿ1:1 ÿ2.53 2.53 ÿ0.492 0.492

ÿ0.1:1 ÿ0.110 1.10 ÿ0.110 1.10

0:1 0 1.09 0 1.18

0.1:1 0.113 1.13 0.105 1.05

1:1 3.82 3.82 0.490 0.490

754 R. Mao, G. Lu / International Journal of Solids and Structures 38 (2001) 741±757



bilizing e�ect no matter whether the axial load is compressive or tensile. The present study, however, while
giving reasonable critical stress for pure compression, predicts strong stabilizing e�ect even in the case
where the axial load is compressive. This strong stabilizing e�ect is quite di�erent from the destabilizing
e�ect shown in Fig. 4. This big di�erence con®rms that the ¯ow theory is very sensitive to the material
properties and its practical performance is poor compared with the deformation theory.

Example 4. The shell used in this example is the same as the one in Example 1, but with R=H � 20 ®xed. The
results shown in Figs. 6±8 are based on the deformation theory.

Fig. 6 gives the critical stress of the shell subject to both axial and circumferential compressions. The
parameter P=�P � Q� used in Fig. 6 is similar to P=�P � S� used in Fig. 4. It can be seen from Fig. 6 that
the critical circumferential stress is not much a�ected by the existence of small axial compression, but on the
other hand, the critical axial stress is quite sensitive to the existence of small circumferential compression.
This can be explained by the dependence of the destabilizing mechanism on the stress level as mentioned in

Fig. 6. Buckling due to biaxial compression in Example 4. P=�P � Q� is a proportion parameter. P=�P � Q� � 0 for pure circumfer-

ential compression. P=�P � Q� � 1 for pure axial compression. P and Q are de®ned by Eq. (25).

Fig. 7. E�ect of axial tension on the critical stress of circumferential compression for the shell in Example 4.
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the previous example. For an individual load of a combined loading system, the closer this load to its own
elastic critical value, the stronger its destabilizing e�ect.

Fig. 7 depicts the in¯uence of axial tension on the critical stress of circumferential compression. The
curve for elastic buckling is for comparison. The comparison between the two curves in Fig. 7 shows that
the stabilizing axial tension in elastic buckling becomes destabilizing in plastic buckling.

The curve in Fig. 8 is for the in¯uence of circumferential tension on the critical stress of axial com-
pression. It has two sections. The right section corresponds to wave number n � 1, which represents a
column-type buckling of the shell. When the buckling mode transits from shell-type buckling with n � 2 to
column-type buckling with n � 1, the stabilizing e�ect of circumferential tension disappears but the de-
stabilizing e�ect due to increasing plasticity remains.
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