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Abstract

A study of plastic buckling of a circular cylindrical shell subject to axial, torsional and circumferential loading
stresses is presented. In the deformation model, the transverse shear is taken into account by a first-order theory with a
correction factor. For the buckled equilibrium, the contributions of both v (circumferential displacement) and w
(normal displacement) to the buckling are included so that a better accuracy can be achieved. J, deformation theory
and J, flow theory of plasticity are used for the establishment of the constitutive relations for buckling analysis. With
the existence of torsional load, the equation of radial equilibrium includes the term of mixed second-order derivative
0’w/0x0y and the plastic in-plane stress—strain relations are anisotropic, and therefore a handy form of solution in
terms of trigonometric functions is no longer possible. Consequently, the finite difference method is used. To improve
the accuracy, a five-point finite difference scheme is employed instead of the conventional central difference. Numerical
results of examples show the interactive roles of the in-plane loads in the plastic buckling. © 2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

The plastic buckling problem of a circular cylindrical shell has long been widely investigated due to its
great importance in the design of aerospace and marine structures. The investigations have in turn greatly
promoted the development of the theory and method in dealing with the buckling phenomenon in the past
half a century. Numerous works about this problem can be found in the literature, covering theoretical and
experimental studies of elastic and plastic buckling under the loads of axial compression, external pressure
or end torsion. For the plastic buckling, among other recent works, studies by Andrews et al. (1983), Ore
and Durban (1992) and Lin and Yeh (1994) are worth mentioning. They are all concerned with the buckling

*Corresponding author. Fax: +86-6282-0892.
E-mail addresses: rjmao@srcap.stc.sh.cn (R. Mao), glu@swin.edu.au (G. Lu).
! Currently visiting research professor, School of Engineering and Science, Swinburne University of Technology.

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(00)00041-X



742 R. Mao, G. Lu | International Journal of Solids and Structures 38 (2001) 741-757

under axial compression and are typical of experimental, analytical and numerical methods, respectively.
For plastic buckling under combined loads especially in the case when torsion is involved, not as many
previous works can be found as in the case without torsion. This is partly because of two difficulties arising
from the existence of torsion. First, the equation of buckled equilibrium in the normal direction will thus
include the mixed second-order derivative 0*w/0xdy. Second, the prebuckling stress state will thus include
shear stress and the stress—strain relations will become anisotropic when the shell is loaded into plastic
range. With these difficulties, the equations of buckled equilibrium cannot be solved in terms of simple
trigonometric or exponential functions, but must be treated with numerical methods. Teng and Rotter
(1989) gave a detailed account of the use of finite element method for the bifurcation analysis of elastic—
plastic axisymmetric shells under combined loads including torsion. Tugcu (1985, 1991) used a helical form
for the displacements of buckling, disregarding the end conditions, to predict the bifurcation of elastic—
plastic cylindrical shells under combined loading, including axial, radial and torsional loads. The results are
good as long as the effect of end conditions can be ignored. Lee and Ades (1957) presented a series of
experimental results of plastic buckling of cylindrical shells under pure torsion, accompanied by a theo-
retical analysis with the energy method under some simplification for stress—strain relations. For the plastic
buckling of shells with bi-axial prebuckling stress state, in addition to Tugcu (1985, 1991) mentioned above,
Giezen et al. (1991) and Blachut et al. (1996) studied cylindrical shells subjected to external pressure and
axial tension with a special attention to the nonproportional loading effect and the well known plastic
buckling paradox regarding the deformation theory and the flow theory.

In the present paper, the plastic buckling of a circular cylindrical shell under combined axial, torsional
and circumferential loading stresses is studied. The axial and circumferential loads may be compressive
or tensile. The deformation model used for analysis is the so-called first-order shear deformation theory,
which allows for the transverse shear of the shell, so that there are five independent variables involved in
the problem, namely, three displacements and two rotations. As a result, there are five equations for the
buckled equilibrium. In these equations, the contribution of a term involving d*v/dx? to the buckling is
included. The inclusion of this term may improve the accuracy in predicting the critical load especially in
the case of column-type buckling (Mao and Williams, 1998a). In addition, due to the existence of tor-
sion, these equations include the mixed derivative d’w/0xdy and plastic stress—strain relations become
anisotropic. Therefore, these equations cannot be fully solved in the form of trigonometric functions.
The main task of the present study is to solve the complete set of five equations together with the
anisotropic stress—strain relations. To do this, a semi-analytical method is used. By assuming a trigo-
nometric form in the circumferential direction, the equations of buckled equilibrium are reduced to
ordinary differential equations in the axial direction, which are solved with a five-point finite difference
scheme.

The computer code based on the foregoing theory and method is checked against some available ex-
perimental data for cases of individual load. Numerical results of examples are given with special focus on
the interactive roles of the loads as stabilizing or destabilizing factors.

2. Basic equations

A right-handed axis system is used for a circular cylindrical shell of radius R and length L. Let x, 6 and z
be the coordinates for any point P in the shell wall, where x is the axial distance of the point to one end of
the shell, 0 is the circumferential angular coordinate and z is the distance of the point to the middle surface
(positive when the point is on the outer side of the middle surface). Another circumferential coordinate
y = R0 is also used.

The displacement field of the first-order shear-deformation theory assumes that
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u*(x,y,z) = u(x7y) +le(x7y)7
v*(x,y,z) :U<xay)+2(p(x’y)7 (1)
w*(x,y,z) :W(x’y)v

where {u*, v*, w*} is the displacement vector in the (x, y, z) coordinate system at an arbitrary point P(x, y, z).
The associated strains at P(x,y,z) in the case of small strains and finite rotations are given by Mao and
Williams (1998b) for thick shells. For thin shells, it reduces to

8;()(,)/72) = Sx(x7y)+z%);’y)7
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represent the strains at the middle surface. In the linearized case, these strains can be further simplified to
become

Qu _61) w ou Ov

Sx:av Sy—ay+§7 va:@—i_a

(3b)

Based on the nonlinear kinematic equation (2) application of the principle of virtual work yields the
equations of buckled equilibrium (Mao and Williams, 1998a,b).

oT, oT,

. = 4
ox Oy 0, (4a)
T, oT, O, 0 /. 0\ T,(ow v\ T,0w
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oM, oM,
-0, =0, 4d
o Q (4d)
aM aM
St 0,=0, (4e)
where the stress resultants are defined as usual
/2 k)2
T, = / oidz, M, = o'zdz, O, = /r;Zdz, ...etc. (5)
—h/2 —h/2

and / is the thickness of the shell. The stresses with a superscript star in Eq. (5) are those at an arbitrary
point P(x,y,z).

Eqgs. (4a)—(4e) are similar to their corresponding equations in Stein (1986) with the only difference being
that Eq. (4b) includes an additional nonlinear term, 0/0x(7,0v/0x), which may improve the accuracy in

predicting the critical load, especially in the case of column-type buckling (Mao and Williams, 1998a).
From Egs. (4a)—(4e) a set of Donnell-type nonlinear equations of equilibrium can be obtained by

dropping these nonlinear terms which do not include the second-order derivatives of displacements,

E;f aal;jy ~o, (6a)
aé\j oM, 0. -0, (6d)
agin oM, _o,=0. (6¢)

Egs. (6a)f(6e) agree with the equations used by Tabiei and Simitses (1994) for thin shells, except for the
additional term mentioned above.
As usual, the linearized equations of equilibrium for initial buckling can be obtained from the nonlinear

Equations (6a)—(6e) by replacing the stress resultants T, T,

and T, in the nonlinear terms of Eqs. (6b) and
(6c) with the constant prebuckling membrane forces 77, Tf’ and T, f’y respectively, and take the form.

oT, 0T,
o dy 0 (7a)
0T, O, O, 0
ox Oy + R L w2 0, (75)
00, 00, T, _,dw o O*w 0 OPw
Ox + dy R 1 ox? 21, 6x6y+ L 2 0 (7c)
oM, 6M,

= -0, =0, (7d)

ax
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oM,, oM,
—_0,=0. 7
o + 3y o, (7e)
As in the usual formulation of a buckling problem, the stress resultants T, T,,,...,0, and the dis-

placements v and w in Egs. (7a)—(7e) are the increments of these quantities due to buckling (from the
prebuckling state to a neighboring buckled state). Therefore, for the study of initial buckling, these in-
crements can be infinitesimal.

As mentioned in the previous section, the in-plane plastic stress—strain relations are anisotropic due to
the torsion. Therefore, the stress—strain relations for the shell buckling can be expressed by

oy On Qun 0O &,
0, 0= 10n On Ox €, (8a)
Ty O Ox  Oss Vo

plus a separate set for transverse shear stresses and strains

T, | _|Ou O Ve
{r;;}‘[o st]{vs;}' (8b)

Substituting Eqs. (8a) and (8b) into Eq. (5) gives
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Eq. (7a) can be satisfied by introducing a stress function F such that
2 2
-E g o F (12)

o YT oy

Let F, v, w, y and ¢ be five basic unknowns of the buckling problem considered. F is used instead of u as a
basic unknown for the boundary condition 7, = 0 (instead of # =0) in this paper. This boundary condition
can be satisfied more easily by F than by u. With Eq. (9a), T, can be expressed as

1
T, = —

Y Ay
where [4;] is the inverse of [4;] in Eq. (9a). Hence, the equation of compatibility and the Egs. (7b)—(7¢)
(equations of equilibrium) can also be expressed in terms of the above five basic unknowns. For initial

(Sy*A_lZT;c*AA_267;C7)7 (13)



746 R. Mao, G. Lu | International Journal of Solids and Structures 38 (2001) 741-757

buckling, the linearized strains of Eq. (3b) are used, from which the equation of compatibility can be
obtained as

Og, O ov

Eq. (14) can be expressed in terms of the basic unknowns by

o’F - - - _ ¥F - oF
(AIIAZZ - Alz) - 2(A16A2 — A1242) o (A66A22 - A@) 20
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Similarly, Egs. (7b)—(7e) are transformed into
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(19)

Eqgs. (15)—(19) are the governing equations in terms of the five basic unknowns for the buckling problem
considered.

3. Constitutive relations of plasticity

The most commonly used constitutive relations of plasticity for buckling problems are J, flow theory
and J, deformation theory (Hill, 1983), although there is a well known paradox about their theoretical
correctness and practical effectiveness.

The J, flow theory gives the increments of plastic strains caused by increments of stresses.

1 1
dsg :4%]2 (E_}_E>Sl:iSlddald. (20)
In Eq. (20) and in Egs. (21) and (22), the subscripts range from 1 to 3 to represent x, y and z, respectively,
and the repeated subscript means summation over it from 1 to 3. The tensor S;; is the stress deviator and
Jr = SuuSun /2. E; is the tangent modulus. For the complete constitutive relations of the J, flow theory, the
elastic part of the incremental strains should be added to Eq. (20). As usual, when applying Eq. (20) to
initial buckling problems, S;; should be the deviator of the prebuckling stresses, and dg;; and dsg should be,
respectively, the increments of stresses and their associated plastic strains due to buckling. The prebuckling
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stress state is supposed to be a plane stress state, where 0,3 = 033 = 033 = 0, and therefore Eq. (20) are
greatly reduced. In particular, Eq. (20) will then give deb; = déf; = 0, so that the constitutive relations (8b)
and (10) are elastic.

The J, deformation theory usually takes the form

3 1 1—2v
& = 55, O ~ (2_Es 3—E)0kk5ija (21)

where FE; is the secant modulus. Since buckling problems need stress—strain relations in an incremental
form, Eq. (21) should be differentiated to give
3 /1 1 3 1 1-2v
dSi/ = 4_.]2 (E — ES)SUSlddO-M + Z_ES <d0'l:/ — ng'kk&:/) + Tdakké,j. (22)

In the case of plane stress, Egs. (22) are greatly reduced. It should be mentioned that the J, deformation
theory is valid only for proportional loading, which is not always the case in buckling problems with
combined loads. But as pointed out by Giezen et al. (1991), the error caused by nonproportional loading is
tolerable as long as load paths do not diverge too much from a proportional path.

As usual, for initial buckling problems, it is assumed that no unloading occurs during the buckling.

4. Solution of the basic equations

The solution is assumed to be of the following form:

F(x,y) = e.(x) cos n0 + es(x) sin nb,

w(x,y) = we(x) cos nf + w,(x) sin n6,

v(x,y) = v.(x) cos nf + vy(x) sin nb, (23)
Y(x,y) = p.(x) cos nO + py(x) sin no,

o(x,y) = fu(x) cos n + fi(x) sin n0,

where 6 = y/R and n is an integer and may assume 1,2,... Substituting Eqs. (23) into Egs. (15)-(19) and
then letting the coefficients of cosnf and sin nf be zero for each equation yields 10 ordinary differential
equations. These lengthy equations can be written in a compact matrix form as follows:

Compatibility:

(U e} = [UH{v} + [U"K{w}, (24a)
Equilibrium of forces in v-direction.

Veley + 7P Hpy + VI + [V Hoy + 7w} = 2 {o} =0, (24b)
Equilibrium of forces in w-direction:

(el{e} + (WP Hp} + W1} + 7 1{o} + [P [{w} = A[Z"[{w} =0, (24c)
Equilibrium of moments in \y-direction.:

[P} + [P'I{f} = [P o} + [P*]{w}, (24d)
Equilibrium of moments in @-direction:

FPp} + IS} = P o} + [F]{w}, (24e)

where the vectors are defined as follows:
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{e} = (e, e, €. ¢l e e etc.

c)Ts) Ter Vs

and the prime is the derivative with respect to x. All the coefficient matrices U¢, V¢, ..., and F" are 2 X 6
constant matrices. Their expressions are not presented in this paper for the sake of conciseness. 1 > 0 is a
load parameter related to the prebuckling membrane forces in the following way:

T)=—P), T)=-04 T, =Sk (25)

Xy

The deformation theory requires that P, Q and S be fixed so that Tf:Tf:]}oy remain the same during the
whole loading process. This is also a requirement for an eigenvalue problem to be obtained.

A five-point finite difference scheme is used to solve Eqgs. (24a)—(24¢). Suppose the interval concerned is
divided evenly into sub-intervals by m points (called stations), x{,x», ..., x,. The derivatives of a quantity,
w, for instance, at station i can be calculated from the values of w, at stationsi —2,i—1,i,i+1andi+2
with a five-point Lagrangian interpolation:

1

w(x;) zm(l,—&o,&—l){wj}, (26a)
1

W) = T (41,16,-30, 16, 1)), (26b)

where {w'} = (w2, wi-l wi wit! wit?)T with the superscript denoting the station number, and 4 is the

length of a sub-interval. Egs. (26a) and (26b) are referred to as the “five-point central difference”.
Similarly, the derivatives of w, at x,_; and x;_, can be calculated with the “five-point forward difference”:

W (x;1) = ﬁ(—a ~10,18,—6, 1){w’}, (27a)
W (xi_) = ﬁ(ll,—20,6,4,—1){wj}, (27b)
W (x,2) = 12%(45,48, —36,16,—3){w'}, (28a)
W (i) = ﬁ(ss, —104, 114,56, 11){w’}. (28b)

The equations of the “five-point backward difference” for the calculation of the derivatives at x;,; and
X;12 can be obtained from Egs. (27a), (27b), (28a) and (28b) by reversing the direction of the x-axis.

Thus, all the vectors in Eqgs. (24a)—(24e) can be expressed with the five-point finite difference scheme at
any station. Finally, the differential Eqgs. (24a)—(24¢) are reduced to a set of algebraic equations:

[U{e} = [U"|{} + [U"]{w}, (29a)
[Vel{e} + 7P Hp} + VI + 7} + 7w} — AP {s} = 0, (29b)
(7elet + WP} + WS} + (o} + [ ){w} — A2 |{w} =0, (29¢)
[PPHp} + [P'If} = [Pz} + [P {w}, (29d)
[FPI{p} + [FTI{f} = [F o} + [F){w}, (2%)

where the vectors are defined as
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m m

{e} = (e, el e, ... e" "), etc.

cr s Yer Vs 1T s

and the coefficient matrices are all (2m x 2m) constant matrices, which are determined when deriving Eqs.
(29a)-(2%).

Using Egs. (29a), (29d) and (29¢) to eliminate {e}, {p} and {f} in Egs. (29b) and (29c) gives an ei-
genvalue problem of a (4m) x (4m) matrix. For any given circumferential wave number 7 in Egs. (23), the
solution of the eigenvalue problem yields eigenvalues, the smallest of which, 4, is called the buckling load
parameter corresponding to that n. The minimum of all these A’ is the critical load parameter, /., of the
shell, i.e.,

for = min (4,). (30)
Then, substitution of A, into Eq. (25), where the values of P, Q and S are given for a specific problem,
yields the critical loads.

5. Axisymmetric case

The case when n = 0 in Eq. (23) is referred to as axisymmetric case. In this case, all quantities are in-
dependent of y. The equations of buckled equilibrium become

dT;

= 0, (31a)
dx+%+r2_:o, (31b)
S (31¢)
A, 0, (31d)
WMy o, —o. (31e)

From these equations it can be seen that only the axial load contributes to the axisymmetric buckling.
Eq. (31a) and the fact that 7,(0) = T,(L) = 0, i.e., there is no change in the end load (since bifurcation is
supposed to occur at a constant load), leads to the conclusion that 7;(x) = 0. Therefore,

du 1 w do
a——14—”<A12E+Alea>~ (32)

Introducing Egs. (9a), (9b) and (10) into Egs. (31b)—(31e) and using Eq. (32) to eliminate u yield four
governing equations:

A2 d“v A44 A11A26 *AIZAIG dw A44 dzl)

y 16 M, P =0 33
( A“)de YT R, & TR @ (332)
AppAyg — A1 Ay d d*w  Audp—A4 d d?

12416 11426 AU y w 11422 — lzw—Ags—W—P—W:O (33b)

RA, dx " a T R4y,
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& d’ dw
Dll%—z‘lss‘/f +D16£_ASSE:O (33¢)
&’ d’ v
D()éa(f — Au +D16%+A44E =0 (33d)
in terms of four basic unknowns, v(x), w(x), ¥(x) and ¢(x), where P = —T? is the axial compressive load.

Egs. (33a)-(33d) can be reduced to an eigenvalue problem of matrix by the five-point finite difference
scheme described in the previous section.

6. Numerical examples

For the computation of numerical examples, two typical sets of boundary conditions are considered.
One is called clamped and is expressed as

T,=0, v=0, w=0, =0, =0 atx=0,L. (34)

The other is called simply supported and is expressed as
I,=0, v=0, w=0, M,=0, ¢=0 atx=0,L. (35)
Conditions in Eq. (34) are all in terms of the five basic unknowns and can be directly used in the solution
procedure described in the previous sections. In conditions in (35), however, M, is not one of the five

unknown variables and the condition M, = 0 should be transformed so as to be expressed by the basic
unknowns:

d d dy d
Dllaw-i-Dnd—z-&-Dm(d—lﬁ—i—a@) =0. (36)
Substitution of Eq. (23) into Eq. (36) yields two equations
Dup. +%(Dl2f‘r +Dieps) + Disf, =0 atx=0,L, (37a)
n
Dup, — R (Diof. 4+ Digpe) + Disf, =0 atx=0,L (37b)

for the finite difference scheme. Let x = 0 be station 0 and x = L be station m + 1. Writing Egs. (37a) and
(37b) in forward finite difference at station 0 yields two algebraic equations, from which p? and p? can be
solved. The solutions can be written in an enlarged matrix form, which reads, after taking into account
=f"=0duetop=0atx=0

P 2 f!
L n f;
= [L,] + [Ly] ; (38)
P Pl 1
Pl Jox 1

where [L,] is a 10 x 8 matrix with its lower eight rows forming an eighth-order unit matrix, and [L,] is also
a 10 x 8 matrix with its lower eight rows being all zero. A similar equation can also be established at
station m + 1.
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pzln73 p:ln73 f‘;n73
pm—3 pm—3 fm—3
=[R)] + [R/] , (39)
p2n+l pgz f;‘m
p;n+l p:n fsm

where [R,] and [R,] are all 10 x 8 matrices with the upper part of [R,] being an eighth-order unit matrix
and the upper part of [R,] being an eighth-order zero matrix. Eqs. (38) and (39) represent the condition
M,.=0 at x=0 and L, and are used in the finite difference scheme.

The boundary conditions other than clamped and simply supported defined by Eqgs. (34) and (35), if
needed, can also be handled in a similar way.

Example 1. For a cylindrical shell, the plastic buckling under axial compression is mainly axisymmetric. In
this example a set of three cylindrical shells tested by Lee (1962) resulting in axisymmetric buckling is used
to check the present theory and the computer code. The stress—strain relation of the aluminium alloy used
for the cylinders is expressed by the Ramberg-Osgood equation,

1+§()] (40)

where the three parameters are Young’s modulus E, yield stress o,, and the hardening parameter . Their
values are £ = 70 GPa, o, = 23.62 MPa and N = 4.1. The elastic Poisson’s ratio is v =0.32. The two ends of
each shell are simply supported.

In Table 1, the experimental results of Lee (1962) and the calculated results with the present method are
compared. Comparison shows that the deformation theory gives pretty good results but the flow theory
predicts much too high critical loads. The three shells were also analyzed for axisymmetric buckling by Ore
and Durban (1992). Their results are also listed in Table 1 and show good agreement with those from the
present study.

a
&=—

E

Example 2. Another check of the present analysis is made with the experimental results of buckling due to
pure torsion given by Lee and Ades (1957). The material used in their first group of tests is also described by
the Ramberg-Osgood equation with £ = 70 GPa, g, = 503.66 MPa and N = 10. The elastic Poisson’s ratio
is v=10.32.

The cylinders used in the tests are fairly long with L/R ~14. Their thicknesses vary in a range. The two
ends of each shell are simply supported. The calculated results are depicted in Fig. 1 together with the
experimental ones. The figure shows a fairly good agreement between theoretical and experimental results,
especially for the flow theory. It seems that for the plastic torsional buckling, the flow theory may predict
critical loads better than the deformation theory.

Table 1

Critical stress (MPa) for pure axial compression
Geometry Experimental Present study Ore and Durban (1992)
Rih L/IR (Lee 1962) Deform. flow Deform. flow
9.36 4.21 96.87 89.71 165.46 88.49 162.33
19.38 4.10 78.60 74.87 124.25 74.09 122.03

29.16 4.06 64.74 67.70 106.00 67.06 103.98
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Critical shear stress (MPa)

600
---- Elastic buckling

500 —— Deformation theory
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400 » Experimental results
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200

100

O 1 Il 1 1
0 10 20 30 40 50
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Fig. 1. Critical stress of torsional buckling of the shell in Example 2.

Example 3. In this example the buckling under combined axial and torsional loads is studied. The shells
used in this example are the same as in Example 2, but with the ratio of radius to thickness fixed at R/h=15.

As is known, for the buckling under combined loads, axial tension acts as a stabilizing factor while axial
compression is a destabilizing factor. To show this, calculations were first made for the elastic buckling of
the shells. The results are depicted by the solid curves in Figs. 2 and 3 showing that, compared with the
buckling under pure torsion, the existence of axial compression reduces the critical shear stress and the
existence of axial tension increases the critical shear stress. In this sense axial compression is said to be
destabilizing and axial tension, stabilizing. Moreover, Fig. 2 shows that torsional load is also a destabilizing
factor in terms of reducing the critical compressive stress compared with the critical stress of pure axial
compression.

For plastic buckling, the interaction of axial and torsional loads are more complicated. First, the critical
stresses for plastic buckling are lower than those for elastic buckling, and the above mentioned stabilizing
and destabilizing effects are weaker for the lower stress level. Second, compared with each individual load,

Critical stress (MPa)
1800

16001 —  Elastic

1400+~ Plastic, deformation theory

1200 -

1000 [
Critical

7axial stress

800
600 Critical shear stress
400

200

0 0.2 0.4 0.6 0.8 1 1.2
P/(P+S)

Fig. 2. Buckling under combined axial compression and torsion in Example 3. P/(P + S) is a proportion parameter. P/(P + §) = 0 for
pure torsion and P/(P + S) = 1 for pure axial compression. P and S are defined by Eq. (25).
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o Critical shear stress (MPa)

Elastic

400 ////—’l//////

300

200+ \

Plastic, deformation theory

100~

O 1 Il 1 Il 1
0 0.2 0.4 0.6 0.8 1 1.2
Tension/shear

Fig. 3. Effect of the axial tension on the critical shear stress of the shell in Example 3.

combined loads tend to increase the plasticity and thus to reduce critical stresses. As a result of the
combination of all these factors, the critical stresses for plastic buckling under combined axial and torsional
loads are shown by broken curves in Figs. 2 and 3 and smooth curves in Figs. 4 and 5.

Tugcu (1985) studied the interaction of axial and torsional loads for the plastic buckling of cylindrical
shells by assuming a helical displacement field for buckling. Some of its results are listed in Tables 2 and 3,
in comparison with the results based on the present study. These results are for the shell used by Tugcu
(1985) with the following geometrical and material parameters: R/h=20, L/IR=10, E/g, = 100,v = 0.3,
and N =06, where N is the strain hardening parameter in Eq. (40). The two ends of the shell are assumed to
be simply supported. The numerical results of Tugcu (1985) listed in the tables are obtained from the curves
in that paper.

For the deformation theory, as Table 2 shows, the results of the present study and those from Tugcu
(1985) are close to each other as long as the loading is identical or close to pure axial compression or pure
torsion (when 70:7, = 0:1, =0.1:1, 0.1:1, =1:0 or —1:0.1, for example). For the loading in which 7" and T,

o Critical stress (MPa)

—— Deformation theory o
— Flow theory /
400 /

300 / ~Critical axial stress

—

2008 Gritical /\
shear stress / \

o L — 1 S E— ‘
0 0.2 0.4 0.6 0.8 1 12
P/(P+S)

100 -

Fig. 4. Plastic buckling under combined axial compression and torsion in Example 3. P/(P+S) is a proportion parameter.
P/(P+S) =0 for pure torsion and P/(P + S) = 1 for pure axial compression. P and S are defined by Eq. (25).
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0 0.2 0.4 0.6 0.8 1 1.2
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Fig. 5. Effect of the axial tension on the critical shear stresss at plastic buckling of the shell in Example 3.

Table 2

Comparison with Tugcu (1985) for the deformation theory
T, Present study Tugcu (1985)

Ger /0y Tee /0y Ou/0y Ter/ Gy

—1:0 —1.62 0 —-1.72 0
—1:0.1 —1.56 0.156 —1.66 0.166
—1:1 —0.742 0.742 —0.540 0.540
—0.1:1 —0.0839 0.839 —0.0836 0.836
0:1 0 0.840 0 0.834
0.1:1 0.0854 0.854 0.0826 0.826
1:1 0.807 0.807 0.551 0.551

Table 3

Comparison with Tugcu (1985) for the flow theory
Ty, Present study Tugcu (1985)

O-cr/o-y Tcr/”y ”cr/o-y Tcr/o'y

—1:0 —1.64 0 —2.364 0
—1:0.1 —-2.14 0.214 —1.30 0.130
—1:1 —2.53 2.53 —0.492 0.492
—0.1:1 —0.110 1.10 —0.110 1.10
0:1 0 1.09 0 1.18
0.1:1 0.113 1.13 0.105 1.05
1:1 3.82 3.82 0.490 0.490

are comparable (7;0:7;(; = —1:1 or 1:1, for example), Tugcu (1985) predicts much lower critical stresses then

the present study. Moreover, the results from Tugcu (1985) do not show any stabilizing effect of axial
tension while a bit of this effect can be seen from the results of the present study.

For the flow theory in Table 3, the results of the present study and those from Tugcu (1985) are close to
each other for the loading identical or close to pure torsion (7}:7;, = 0:1, =0.1:1, or 0.1:1 for example).
When the axial load is large (e.g. Tf]}o} = —1:0, =1:0.1, —=1:1 or 1:1), Tugcu (1985) predicts strong desta-
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bilizing effect no matter whether the axial load is compressive or tensile. The present study, however, while
giving reasonable critical stress for pure compression, predicts strong stabilizing effect even in the case
where the axial load is compressive. This strong stabilizing effect is quite different from the destabilizing
effect shown in Fig. 4. This big difference confirms that the flow theory is very sensitive to the material
properties and its practical performance is poor compared with the deformation theory.

Example 4. The shell used in this example is the same as the one in Example 1, but with R/H = 20 fixed. The
results shown in Figs. 6-8 are based on the deformation theory.

Fig. 6 gives the critical stress of the shell subject to both axial and circumferential compressions. The
parameter P/(P + Q) used in Fig. 6 is similar to P/(P + S) used in Fig. 4. It can be seen from Fig. 6 that
the critical circumferential stress is not much affected by the existence of small axial compression, but on the
other hand, the critical axial stress is quite sensitive to the existence of small circumferential compression.
This can be explained by the dependence of the destabilizing mechanism on the stress level as mentioned in

o Critical stress (MPa)

gor Critical

50 circumferential stress

40 VP,JZ_*\\\ 4 Critical axial stress
/\
! //‘ \

0 0.2 0.4 0.6 0.8 1 12
P/(P+Q)

Fig. 6. Buckling due to biaxial compression in Example 4. P/(P + Q) is a proportion parameter. P/(P + Q) = 0 for pure circumfer-
ential compression. P/(P + Q) = 1 for pure axial compression. P and Q are defined by Eq. (25).

o Critical circumf. stress (MPa)

R

150 /\

Elastic buckling

100 -
Plastic buckling
50
?
0 L S ) E— 1 1 -.I
0 0.2 0.4 0.6 0.8 1 1.2

Axial tension/circumf. compression

Fig. 7. Effect of axial tension on the critical stress of circumferential compression for the shell in Example 4.
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Fig. 8. Effect of circumferential tension on the critical stress of axial compression for the shell in Example 4.

the previous example. For an individual load of a combined loading system, the closer this load to its own
elastic critical value, the stronger its destabilizing effect.

Fig. 7 depicts the influence of axial tension on the critical stress of circumferential compression. The
curve for elastic buckling is for comparison. The comparison between the two curves in Fig. 7 shows that
the stabilizing axial tension in elastic buckling becomes destabilizing in plastic buckling.

The curve in Fig. 8 is for the influence of circumferential tension on the critical stress of axial com-
pression. It has two sections. The right section corresponds to wave number » = 1, which represents a
column-type buckling of the shell. When the buckling mode transits from shell-type buckling with n = 2 to
column-type buckling with n = 1, the stabilizing effect of circumferential tension disappears but the de-
stabilizing effect due to increasing plasticity remains.
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